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Subiect la Matematică

Subiectul. 1 Fie A =

 0 1 0
0 0 1
1 0 0

, iar I3 =

 1 0 0
0 1 0
0 0 1

.

i) Calculaţi A2, A3 şi I3 +A+A2.

ii) Determinaţi suma S = I3 +A+A2 +A3 + . . .+A2017

iii) Arătaţi că dacă X ∈ M3(C) atunci AX = XA dacă şi numai dacă există x, y, z ∈ C astfel ı̂ncât

X =

 x y z
z x y
y z x

.

iv) Dacă ε este una din soluţiile ecuaţiei x2+x+1 = 0, iar B = I3+εA+ε2A2, arătaţi că Bn = 3n−1B,
pentru orice n ∈ N∗.

Subiectul. 2 Pentru a ∈ R definim pe R legile de compoziţie

x⊕ y = x+ y + a

x⊙ y = xy + a(x+ y) + a2 − a

i) Arătaţi că, pentru orice a ∈ R, ecuaţia x⊕ x = x⊙ x are două soluţii reale distincte.

ii) Aflaţi structura generată pe R de aceste două legi de compoziţie.

Subiectul. 3 Se consideră funcţia f : (0, ∞) → R, f(x) =
lnx

x
.

i) Determinaţi asimptotele la graficul funcţie f .

ii) Demonstraţi că f(x) ≤ 1

e
, pentru orice x ∈ (0, ∞).

iii) Comparaţi numerele eπ şi πe.

iv) Determinaţi intervalele de convexitate, respectiv concavitate, ale funcţiei f .

v) Calculaţi

e∫
1

f(x) dx.

Subiectul. 4 Se consideră funcţiile f, F : R → R, f(x) = xex şi F (x) = (x− 1)ex.

i) Să se verifice că F este o primitivă a funcţie f .

ii) Să se calculeze aria suprafeţei plane determinate de graficul funcţie f , axa Ox şi dreptele de ecuaţie
x = −1 şi x = 1.

iii) Să se demonstreze că

x∫
1

f(t)f ′′(t)−
(
f ′(t)

)2
f2(t)

dt =
x+ 1

x
− 2, pentru orice x > 1.

Notă: Toate subiectele sunt obligatorii şi se notează cu note cuprinse ı̂ntre 1 şi 10.

Timp de lucru: 3 ore.
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Soluţii şi barem de corectare la Matematică

Subiectul. 1 Fie A =

 0 1 0
0 0 1
1 0 0

, iar I3 =

 1 0 0
0 1 0
0 0 1

.

i) Calculaţi A2, A3 şi I3 +A+A2.

ii) Determinaţi suma S = I3 +A+A2 +A3 + . . .+A2017

iii) Arătaţi că dacă X ∈ M3(C) atunci AX = XA dacă şi numai dacă există x, y, z ∈ C astfel ı̂ncât

X =

 x y z
z x y
y z x

.

iv) Dacă ε este una din soluţiile ecuaţiei x2+x+1 = 0, iar B = I3+εA+ε2A2, arătaţi că Bn = 3n−1B,
pentru orice n ∈ N∗.

Barem: Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

i) Calculează corect A2 =

 0 0 1
1 0 0
0 1 0

, A3 = I3 şi I2 +A+A2 =

 1 1 1
1 1 1
1 1 1

, . . . . . . . . . . . . . . . (1p)

ii) Justifică faptul că A3n = I3, pentru orice n ∈ N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Obţine S = I3+A+A2
671∑
k=0

A3k(I3+A+A2) = I3+A+672A2(I3+A+A2) = I3+A+672(I3+A+A2)

= 673(I3 +A+A2)−A2 =

 673 673 672
672 673 673
673 672 673

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1p)

iii) Arată că toate matricile de forma X =

 x y z
z x y
y z x

 comută cu A . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Luând X =

 x y z
a b c
u v t

 ∈ M3(C), din AX = XA deduce că b = t = x, c = u = y şi a = v = z . (2p)

iv) Justifică ε3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Calculează şi obţine B2 = 3B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Demonstrează inductiv că Bn = 3n−1B, pentru orice n ∈ N∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Subiectul. 2 Pentru a ∈ R definim pe R legile de compoziţie

x⊕ y = x+ y + a

x⊙ y = xy + a(x+ y) + a2 − a

i) Arătaţi că, pentru orice a ∈ R, ecuaţia x⊕ x = x⊙ x are două soluţii reale distincte.

ii) Aflaţi structura generată pe R de aceste două legi de compoziţie.



Barem: Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

i) Ecuaţia x⊕ x = x⊙ x este echivalentă cu x2 + 2(a− 1)x+ a2 − 2a = 0 şi are ∆ = 4 > 0, deci soluţiile
reale distincte (x1 = −a, x2 = 2− a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

ii) Observăm că pentru a = 0 cele două legi de compoziţie devin adunarea şi ı̂nmulţirea numerelor reale,
prin urmare

(
R,⊕,⊙

)
este corp comutativ

Pentru orice a ∈ R, arbitrar fixat, avem:

- legea ”⊕” este asociativă, comutativă, admite element neutru pe ”−a” şi orice element din R este
simetrizabil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

- legea ”⊙” este asociativă , comutativă, are element neutru ”1 − a” şi orice element din R diferit de
”−a” este simetrizabil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

- legea ”⊙” este distribitivă faţă de legea ”⊕” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Prin urmare
(
R,⊕,⊙

)
este un corp comutativ, pentru orice a ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Obs: Eventualul răspuns ”
(
R,⊕,⊙

)
este inel comutativ” se punctează analog.

Subiectul. 3 Se consideră funcţia f : (0, ∞) → R, f(x) =
lnx

x
.

i) Determinaţi asimptotele la graficul funcţie f .

ii) Demonstraţi că f(x) ≤ 1

e
, pentru orice x ∈ (0, ∞).

iii) Comparaţi numerele eπ şi πe.

iv) Determinaţi intervalele de convexitate, respectiv concavitate, ale funcţiei f .

v) Calculaţi

e∫
1

f(x) dx.

Barem: Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

i) Avem lim
x↘0

lnx

x
= −∞, deci dreapta Oy este asimptotă verticală . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (0,5p)

Cum lim
x→∞

lnx

x
= 0, rezultă că Ox este asimptotă orizontală spre +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . (0,5p)

ii) Avem f ′(x) =
1− lnx

x2
, pentru orice x ∈ (0, ∞) şi deci f ′(x) > 0, pentru orice x ∈ (0, e), iar f ′(x) < 0,

pentru orice x ∈ (e, ∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Rezultă că x = e este punct de maxim global pentru funcţia f şi, prin urmare, f(x) ≤ f(e) =
1

e
, pentru

orice x ∈ (0, ∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

iii) Fie x1 = e şi x2 = π. Cum x1, x2 ∈ [e,∞) cu x1 < x2, din monotonia funcţie f , rezultă că f(e) > f(π)

sau
ln e

e
>

lnπ

π
, ceea ce este echivalent cu eπ > πe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

iv) Avem f ′′(x) =
2 lnx− 3

x3
, de unde obţinem că funcţia f este concavă pe intervalul (0, e3/2] şi convexă

pe intervalul [e3/2, ∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

v)

e∫
1

lnx

x
dx =

e∫
1

lnx
(
lnx

)′
dx =

1

2
ln2 x

∣∣∣e
1
=

1

2
(1− 0) =

1

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)



Subiectul. 4 Se consideră funcţiile f, F : R → R, f(x) = xex şi F (x) = (x− 1)ex.

i) Să se verifice că F este o primitivă a funcţie f .

ii) Să se calculeze aria suprafeţei plane determinate de graficul funcţie f , axa Ox şi dreptele de ecuaţie
x = −1 şi x = 1.

iii) Să se demonstreze că

x∫
1

f(t)f ′′(t)−
(
f ′(t)

)2
f2(t)

dt =
x+ 1

x
− 2, pentru orice x > 1.

Barem: Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

i) Calculează F ′ şi observă că F ′ = f pe R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

ii) A =

1∫
−1

|f(x)| dx = −
0∫

−1

f(x) dx+

1∫
0

f(x) dx = F (−1)− 2F (0) + F (1) = 2
(
1− 1

e

)
. . . . . . . . . . . . . (3p)

iii) Observă
f(t)f ′′(t)−

(
f ′(t)

)2
f2(t)

=

(
f ′

f

)′

(t), pentru orice t ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Cu formula Leibnitz-Newton se obţine că

x∫
1

f(t)f ′′(t)−
(
f ′(t)

)2
f2(t)

dt =
f ′(t)

f(t)

∣∣∣x
1
=

x+ 1

x
− 2 . . . . . . . . (3p)

Notă: Orice altă variantă de rezolvare corectă se punctează corespunzător.


